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REACTIVE FLOW LAGRANGE ANALYSIS I N  PLASTIC BONDED EXPLOSIVES 

Gerald L. Nu t t  and LeRoy M.Erickson 
Lawrence Livermore Nat iona l  Laboratory 

U n i v e r s i t y  o f  Cal i f  orn  i a  
L ivermore. Cal i f o r n  i a 94550 

ABSTRACT 

A descr ip  i o n  o f  Lagrange gauge measurements i n  PBX-9404 and RX-26- F i s  
given. 

exp los ives .  

assumptions. 

d e s c r i p t i o n  o f  t h e  chemical r e a c t i o n  f rom gauge data. 

The da ta  a re  used t o  s tudy  the  progress o f  r e a c t i o n  i n  these 

The r e s u l t s  a re  discussed along w i t h  t h e  under ly ing  t h e o r t e t i c a l  
Emphasis i s  g iven  t o  the  p r a c t i c a l  problems o f  cons t ruc t i ng  a 
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I .  INTRODUCTION 

T h l s  report discusses a technfque developed a t  Lawrence Livermore 
Nat ional  Laboratory t o  monitor the progress o f  a react ion i n  s o l i d  exploslve. 
The method has been extens ive ly  t reated by  other  author^,^**'^ b u t  the 
procedure i n  the  present discussion most c lose ly  fo l lows t h a t  given by 
Cowperthwaite (see Vantine e t  al. Ref. 4). 

Ye i n i t i a t e  a sample o f  explosive with a plane shock wave. The one 
dimensional f l o w  behind t h e  shock i s  measured us ing a ser ies o f  p a r t i c l e  
v e l o c i t y  and pressure gauges located a t  Lagrange posit ion, h. Yith 

ve loc i ty- t ime records a t  d i f f e r e n t  values o f  h we are able t o  construct the 
p a r t i c l e  v e l o c i t y  surface u(h,t), i n  some reg ion o f  t h e  h-t plane. Similarly, 
a pressure surface p(h,t) can be b u i l t .  Figure 1 shows a t y p i c a l  experimental 
s e t  up f o r  p a r t i c l e  v e l o c i t y  measurements. 

measurements and another f o r  pressure measurements. When pressure h i s t o r i e s  
are measured, t h e  v e l o c i t y  gauges ind icated i n  Fig. 1 are replaced by manganin 
Pressure gauges and t h e  magnetic f i e l d  i s  removed. It i s  the  presence o f  the 
magnetic f i e l d  tha t  prevents use o f  both types o f  gauges i n  a s ing le  
experiment . 
The v e l o c i t y  data i n  t h i s  r e p o r t  were co l l ec ted  w i t h  anodized aluminum 
electromagnetic gauges. Ye f i n d  these gauges accurate t o  about 1.0 percent. 
The pressure h i s t o r i e s  were taken from hysteresis-corrected manganin pressure 
gauges which are accurate t o  about 2.0 percent. These data are used t o  
ca l cu la te  a l l  of t h e v a r i a b l e s  descr ib ing the one dimensional f l o w  o f  t he  
r e a c t i n g  mixture o f  explosive and product gases inc lud ing ve loc i ty ,  pressure, 
spec i f ic  volume, and s p e c i f i c  i n t e r n a l  energy. 

With a descr ip t ion o f  the f l ow ,  and reasonable assumptions about the 
equations of s ta te  o f  t he  explosive and product gases, we can ca lcu late the 
mass f r a c t i o n  of explosive products, 

A t  a minlmum two experiments are required, one f o r  the v e l o c i t y  

The gauges used i n  these measurements were developed by E r i ~ k s o n ~ ’ ~ .  

=A P 
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where Mp and Mx are the mass o f  the product and reactant respectively. Ye 

s h a l l  r e f e r  t o  X as the react ion coordinate. 
This program has been ca r r i ed  ou t  f o r  two we l l  characterized s o l i d  

explosives, PBX-9404, and RX-26-AF. Both materials are composed o f  a f i n e l y  
d i v ided  explos ive compound he ld  together with a small amount o f  p l a s t i c  
bonding material.  PBX-9404 i s  composed o f  94 percent IMX, 3 percent 
n i t r o c e l l u l o s e  and 3 percent i n e r t  binder. 2.5 percent by  weight o f  t he  HMX 
p a r t i c l e s  are greater than 300 um size. RX-PCAF i s  an experilnental p l a s t i c  

bonded explos ive (PBX). 
percent MX, and 4.1 percent Estane Poly(urethene-ester-HOI) i n e r t  binder. 
The p a r t i c l e  s izes i n  RX-26-AF are a l l  l ess  than 60um. We w i l l  show 
evidence t h a t  t he  explosive p a r t i c l e  s i z e  has a s i g n i f i c a n t  e f f e c t  on the 
gauge response. 

The a l t e r n a t i v e  approach o f  b u i l d i n g  a p(h,t) surface has been explored 
elsewhere. Using pressure h i s t o r i e s  from embedded gauges and a p( V.E.1) 
equation o f  state, react ion ra tes  have been calculated by Wackerle, Johnson, 
and Halleck.' The assumption underlying the equation of s t a t e  i s  the 
e q u i l i b r a t i o n  o f  t he  temperatures o f  explosive and product. 

3 Dremin a lso use a pressure surface, b u t  assume t h a t  no heat i s  exchanged 
between reactant  and product. 

I n  the fo l l ow ing  sections we w i l l  b r i e f l y  discuss the theory o f  reac t i ve  
f l o w  Lagrange analysis (RFLA), describe the construction o f  the u(h,t) 
surface, discuss the equations o f  s t a t e  o f  reactants and products, and show 
the t ime h i s t o r i e s  o f  the react ion i n  PBX-9404 and RX-26-AF. 

I t s  composition by weight i s  46.6 percent TATB, 49.3 

Kanel and 

11. THEORY 

I f  we can understand the development and shape o f  the surface u(h,t), we 
can e a s i l y  const ruct  t he  remainder o f  t he  f l o w  variables through the one 
dimensional Lagrange equations f o r  f l u i d  motion: 

p(h,t) * p(h', t)  - $/ %h 
o h I a t  
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The subscript s r e f e r s  t o  a shock boundary condit ion, and o t o  condit ions 
i n  f r o n t  o f  t he  shock wave. 
t h e  s p e c i f i c  i n t e r n a l  energy o f  t h e  react ing f l u i d .  

pressure requi res a pressure h i s t o r y  a t  some pos i t i on  h = h '  covered by the 
surface u(h,t). 
v e l o c i t y  be prec ise enough t o  supply accurate p a r t i a l  de r i va t i ves  of u wi th  
respect t o  h and t. 

I t  i s  bel ieved t h a t  a reac t i on  s t a r t i n g  i n  explosive mater ia l  begins a t  
c e r t a i n  reac t i on  s i t e s  ca l l ed  "hot spots" and t h a t  a laminar combustion wave 
proceeds from these s i t e s  subsonically, t o  consume the e n t i r e  explosive. This 
genera l izat ion o f  the w e l l  known ZND (Zeldovich, von Neumann, Doering) model 

o f  detonation can be expressed as a pressure equi l ibr ium between the  explosive 

and product gases 

V i s  t he  speci f ic  volune, p the pressure, and e 
Calcu lat ion of t he  

Clearly, i t  i s  necessary t h a t  the measurement o f  t he  f l o w  

p(h,t) = px(h.t) = pP(h,t). ( 5) 

The superscripts x, and p r e f e r  t o  the explosive and product respectively. 
The boundary between the explosive and product i s  formed by the thin 

conbustion wave. Although the wave i s  characterized by high temperatures 
(2000-3000 K). we w i l l  assume t h a t  low heat conduct iv i ty  prevents s i g n i f i c a n t  

t rans fe r  o f  heat from the f r o n t  i n t o  the explosive on a t ime scale comparable 
t o  cha rac te r i s t i c  react ion times. The ef fect  o f  t h i s  assumption i s  t ha t  the 
entropy i s  constant i n  the unreacted explosive phase o f  the mixture during the 
react ion.  The entropy production occurs on l y  i n  the t h i n  reac t i ng  burn f ron t .  

The in te rna l  energy and s p e c i f i c  volume obey 

e(p.V,X) = aeP(p,VP) + ( 1  - a)eX(p,VX), and 

Jsing Eqs. (2) and (4) t o  evaluate the  l e f t  hand sides o f  Eqs. (6) and (7 )  
respect ive ly ,  and using the isentrope f o r  the explosive t o  determine Vx, we 
obta in  two equations w i t h  the unknowns a ,  and Vp. Consequently, a l l  the 
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f low var iab les can be obtalned if we 
fo r  the explosive and product gases. 

determined f o r  the rML form: 7 

are able t o  supply the  q u a t i o n s  of s t a t e  
These equations o f  s ta te  have been 

The isentrope f o r  t h i s  equation o f  s t a t e  i s :  

p = A exp(-R,v/Vo) + B exp(-Rzv/vo) + c+I*-’ . ( 9) 
0 

The constants i n  these equations have been f i x e d  f o r  the product gases b y  
cy l i nde r  t e s t  data and Chapman-Jouguet (C-J) measurements which def ine the  

release isentrope. 
very l i m i t e d  amount o f  Hugoniot data. The constants appropriate f o r  PBX-9404 

and RX-26-AF are shown i n  Table 1. 

For the explosive, the constants are f i x e d  by a f i t t o  a 

The d i f ference between the s p e c i f i c  i n te rna l  energies o f  t he  reactant  and 

product gases a t  standard condit ions i s  the 

X P  Q = eo - eo , 
which defines the r e l a t i v e  energy scales o f  

and product. 

quan t i t y  Q given i n  Table 1: 

(10) 

the  JWL equations f o r  explosive 

Using t h i s  r e s u l t  i n  Eqs. (4) and (6) y i e l d s  

V x  can be calculated from Eq. (9 )  by subs t i t u t i ng  V x  for V, and using the 
appropriate constants f o r  the reactant from Table 1. Notice tha t  the constant 
C i n  Eq. (9)  i s  a funct ion o f  entropy on ly  and i s  determined by condit ions a t  
t h e  shock f ron t .  

I n  sumnary, t h e  reactant and product equations o f  state, along w i th  
u(h,t) and a s ing le pressure h i s t o r y  p(h’, t) ,  close the equations o f  motion 
and al low us t o  ca lcu late 1 (h,t). 
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111. THE LAGRANGE GAUGE HEMUREMENTS 

Our experimental samples of explosive (see Fig.  1 )  a re  r i g h t  circular 
cylinders 16 m high and 90 m i n  diameter. The gauges are placed near the 
a x i s  a t  various distances h ,  from the base. A plane shock wave is generated 
by a cylindrlcal Kel-F f lyer  hit t ing a Kel-F buffer a t  a velocity of 
0.86 d p s .  The resulting symnetrical impact creates a shock which is 
transmitted through the buffer to the HE. 

surface i s  registered by a pressure or velocity gauge establishing the time 
base for the Lagrange Analysis. The pressure a t  t h i s  surface is sustained 
through the experiment, and the data are gathered before la te ra l  re l ie f  waves 
can affect the gauge readings. The input pressure i s  nominally 2.5 GPa. 

Figure 2 shows a typical collection of velocity, and pressure histories.  
The analysis i s  performed around the pressure curve bracketed by three 
velocity-time curves. 

recorded from an oscilloscope trace. The pressure gauge output i S  a 
resjstance-time curve similarly recorded by an oscilloscope. 
compared with the gauge calibration data and directly converted t o  velocity 
and pressure histories. 
generated us ing  nine knots. Typically, the f i t s  are generated using 
approximately 10Q10 points .  
the spline i s  less than +2.0 percent for the velocity, and about +5.0 
percent for  the pressure data respectively. 

The use of nine knots (eight spline segments) was arrived a t  as a 
compromise between good resolution of the digitized data, by which we mean 
small scatter about the f i t ,  and resolution of the noise i n  the data. By 
increasing the number of spline segments to f i t ,  for example, one hundred 
points, we can make the scatter about the spline a rb i t ra r i ly  small. 
Unfortunately, i n  the limit of twenty-five spline segments we get a curve with 
wildly changing derivatives destroying the usefulness of t h e  spline. To some 
extent t h i s  choice involved judgements as t o  what are the physical features of  
the data and what i s  "noise." Such judgements are aided by comparison w i t h  
many nearby measurements, reproducibility, and the requirement that the 
surface be a smooth function of h as well as t. 

The arrival of the shock a t  the HE 

The velocity gauge signal i s  a voltage-time curve photographically 

These traces are 

The data is then digitized and a cubic spline f i t  i s  

The knots are adjusted until the scatter about 
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It i s  necessary, i f  we are t o  construct a surface out  of the curves, t h a t  
each u-t curve have the  same nurnber o f  s p l i n e  segnents and t h a t  there be a 
correspondence between the  knots (or  end points  o f  a sp l ine segnent) on a 
p a r t i c u l a r  curve with the knots on the  neighboring curve. Thus, s t a r t i n g  from 
the f i r s t  knot  a t  the shock, the t h i r d  knot  always l i e s  on the f i r s t  maximum, 
the  s i x t h  knot l i e s  a t  the minimum. The e igh t  and n i n t h  knots mark the second 
peak ( i f  any) and the end o f  the data respectively. 

v e l o c i t y  curves i n t o  ten  segments. The corresponding d i v i s ion  points  i n  each 
o f  t h e  th ree  records are then j o i n t e d  by  a second degree spl ine. Thus. we are 
able t o  construct the u(h,t) surface using a dense set o f  po ints  and we can 
ca l cu la te  a l l  t he  f i r s t  der ivat ives o f  t h e  surface a t  these points. 

Returning t o  Fig. 2, w i t h  increasing h we no t i ce  an increase i n  the 
maximum veloc i ty ,  i nd i ca t i ng  the  react ion i s  bu i l d ing  toward detonation. A t  

h = 10 mn we see a d e f i n i t e  minimum i n  the ve loc i t y  time curves. and the 
beginning o f  a second maximum. A t  h = 13 mn the second maximum i s  c l e a r l y  
evident. Th is  minimum must be associated w i th  a maximum i n  the pressure vs. h 
curve as requi red by the  momentum equation. The second ve loc i t y  maximum, 
however. i s  n o t  as easy t o  in terpret ;  does i t  a r i se  from the ra re fac t i on  
o r i g i n a t i n g  from the rea r  o f  t h e  sample, o r  does i t  ind icate fur ther  reac t i on  
i n  the explosive? 
from RX-26-AF samples w i t h  f a s t  burning (WX) and slow burning (TATB) 

components. The second maximum appears also i n  the PBX-9404 data but  i t  i s  
n o t  as pronounced as i n  RX-26-AF. 
explosives taken a t  h = 10 mm from the f r o n t  o f  the sample are shown i n  Fig. 3 
f o r  comparison. 

We studied t h i s  problem using the  DYNAZD computer code t o  model the 
experiments. Reactive f l ow  models f o r  the two explosives were used.'*' The 
ca lcu lat ions were done w i th  the rea r  surface o f  t he  explosive terminated w i t h  
t e f l o n  a t  h = 16 mn, as i n  the experiments, and also w i th  the t e f l o n  replaced 
by  more HE. 

j u s t  as i n  the experiment. With t e f l o n  replaced by explosive, the second 
maximum disappeared. When we changed the  reac t i ve  f l o w  model t o  one 

The next step i s  t o  subdivide each sp l i ne  segment o f  t h e  three p a r t i c l e  

I t  i s  important t o  no t i ce  tha t  the data i n  Fig. 2 are taken 

The v e l o c i t y  t i m e  curves f o r  these two 

For PBX-9404, t he  ca l cu la t i on  showed a second maximum i n  the ve loc i t y  
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representing RX-26-AF we found a much larger second maximum in the u - t  plots. 
The second maximum was reduced, b u t  did not disappear, when explosive replaced 
the teflan. 
associated w i t h  the chemistry. For the analysis of RX-26-AF the second 
maximum cannot be ignored. As a resu l t  we thought i t  prudent t o  inclide the 
second maxima i n  our f i t s  to the u - t  curves for both explosives. 

I t  i s  normal practice 
i n  these experiments to use two, and sometimes four, gauge fo i l s  a t  a given 
Lagrange position. 
histories of the two explosives and also between a pair of records in each 
explosive a t  the same Lagrange station ( h  = 6 mn). 

In the RX-26-AF1 each pressure gauge agrees w i t h  its neighbor a t  the same 
Lagrange station t o  within a few percent. 
the neighboring gauges agree only when the pressure i s  increasing and disagree 
strongly when pressure decreases with time as shown i n  Fig. 4. In each of the 
explosives there are a t  least  s ix  such pairs of pressure records and we found 
no exceptions t o  t h i s  rule. 

theoretical model of a homogeneous reacting fluid. 
separation, indicate pressure gradients of the order of 50 kbar/m. 
inhomogeneities are apparent only i n  the later stages of the reaction when the 
ra te  of pressure increase due to  the reaction i s  nearly balanced by the 
pressure decreases due to  expansion. 
does not occur i n  RX-26-AF. 

I t  i s  interesting t o  note t h a t  the specifications for the explosives 
d i f fe r  in the allowable explosive particle size used for their manufacture. 
The PBX-9404 ca l l s  for 75 percent of the HMX particles to be greater t h a n  
0.16 mm while the particle sizes i n  RX-26-AF are not greater than 0.06 mn. 
Inspection of the surface of HE samples by microscope shows rather large 
crystals of t M X  (about 0.5 mn) w i t h  separations on the order of 1.0 nm. 

large crystals are not  present in the RX-26-AF. 
This evidence suggests the inhomogeneities observed by the pressure 

histories in PBX-9404 are related t o  the b u r n i n g  of the large crystals during 
the la te  stage of the reaction. Probably, the smaller particles are consumed 

Our conclusion is that fo r  PBX-9404, the second maximum is n o t  

The pressure time data presented another puzzle. 

Figure 4 gives a sample of the comparison between pressure 

In the PBX-9404 on the other hand, 

In the PBX-9404 we are  clearly observing a significant departure from our 
Figure 4 ,  and the fo i l  

These 

Such inhomogeneous reaction apparently 

Such 
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e a r l y  i n  the react ion and the large p a r t i c l e s  dominate as the react ion 

completes. 
rectangle, wh i l e  the gauge separation i s  several mil l imeters, o r  about the 
same distance as the separation o f  l a rge  WX crystals. We bel ieve 

disagreement between neighboring gauges does not occur i n  RX-26-AF because the 

large explosive c rys ta l s  are not  present. 

products, i t  i s  no t  cred ib le  t h a t  a pressure dif ference on the order o f  10 GPa 

can be maintained f o r  a f u l l  microsecond over the few mi l l imeters  separating 
t h e  two gauges. Such a pressure gradient would destroy the gauges. Yet, t h e  

current  i n  each gauge i s  constant f o r  some t i m e  a f t e r  they begin repo r t i ng  
d i f f e rence  pressures. The best explanation we can o f f e r  f o r  the presistence 
o f  disagreement i n  gauge signals, i s  t h a t  the l oca l  pressure f l uc tua t i ons  
pe r fo ra te  t h e  Teflon armor opening a shunt current path i n  the gauge leads. 

This  would cause a lowering o f  the pressure signal. The problem i s  no t  a 

serious one f o r  RFLA since i t  a f fec ts  on ly  the very end o f  the reaction. 

any case, we always do the analysis using the higher pressure reading. 

r e p r o d u c i b i l i t y  o f  the f l y e r  ve loc i ty .  A t  l eas t  two experiments are necessary 

t o  complete the analysis: 

provide a pressure h i s t o r y  f o r  the i n i t i a l  condit ion i n  Eq. ( 3 ) .  The pressure 
a t  the shock f r o n t  i s  determined by t h e  shock t ra jec to ry  h ( t ) ,  and the  

p a r t i c l e  ve loc i ty ,  both given by the v e l o c i t y  gauge measurements. 

The cha rac te r i s t l c  gauge ac t i ve  element i s  a 0.7 nm x 2.0 mm 

Assuming a sound speed of approximately 6 ws i n  the PBX-9404 

I n  

Our experience shows the most troublesome source o f  e r ro r  i n  RFLA i s  the 

one t o  map out  the u(h,t) surface, the other t o  

us dh(t) 
ps = %  d t  

The same pressure i s  also determined independently w i th  the pressure gauge 

measurements. 

experiments these shock pressure determinations w i l l  not agree. 

The e f f e c t  shows up when h, the Lagrange coordinate o f  the ca lcu lated 

pressure i s  smaller than h', t h e  pos i t i on  o f  t he  pressure gauge. Figure 5 
shows the region o f  the h- t  plane i n  the neighborhood o f  the pressure gauge 
record. For h' > h we must d i v ide  the in tegrat ion i n t o  t w o  regions. One 

region uses the gauge measurement as the i n i t i a l  condition. This region i s  
ind icated i n  Fig. 5 by the bracket labeled 2. The other region, indicated by 

Unless the f l y e r  v e l o c i t y  i s  exact ly  the same i n  both 
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the bracket labeled 1, uses Eq. (12) where the r i g h t  hand s ide i s  evaluated 
e n t i r e l y  from v e l o c i t y  gauge data. This  s i t ua t i on  can lead t o  a d i scon t inu i t y  

i n  the ca lcu lated pressure h i s t o r y  a t  h. 

constant f ac to r  t o  agree w i t h  Eq. (12). 

sets i s  judged by  the closeness o f - t h e  scal ing fac to r  t o  un i ty .  
A one percent dif ference i n  f l y e r  ve loc i t y  w i l l  a f f ec t  t he  p a r t i c l e  

v e l o c i t y  a t  t h e  shock f r o n t  by  about a percent. The coresponding pressure 
w i l l  be affected by approximately 2 percent, and because o f  t he  pressure 
dependence o f  t he  reac t i on  r a t e  we can expect a cumulative e f f e c t  l a t e r  i n  the 
flow. 

Var ia t ions i n  f l y e r  v e l o c i t y  ampl i fy  differences i n  p a r t i c l e  v e l o c i t y  

Me deal wi th t h i s  problem by sca l i ng  the pressure measurement by  a 
The consistency o f  d i f f e r e n t  data 

deep i n  the flow. This causes even greater f luctuat ions i n  the gradients o f  
t h e  v e l o c i t y  surface. Consequently, i t  i s  extremely d i f f i c u l t  although no t  
impossible t o  create the surface from v e l o c i t y  h i s t o r i e s  when a l l  the v e l o c i t y  
records are no t  from the same experiment. 

I V .  RESULTS 

Out o f  t h i r t e e n  experiments w i t h  PBX-9404 we have selected a s ing le  
A. PBX-9404 

p a r t i c l e  v e l o c i t y  experiment spanning the  reg ion 3 mn < h < 7 mn. 
three v e l o c i t y  t ime records are denoted 39196, K, and N. 
experiments are chosen t o  complete the data: 3911K located a t  h = 3.98 mn, 
and 391OK located a t  h = 6.046 mn. These pressure shots were selected because 

o f  t h e i r  l oca t i on  and because o f  t h e i r  consistency w i th  the v e l o c i t y  data. 
Pressure record 391OK o n l y  needed a -2.4 percent adjustment t o  agree w i t h  

experiment 3919, and the pressure gauge 3911K only needed +0.5 percent 
adjustment. According t o  the v e l o c i t y  data, the shock pressure i s  2.38 GPa, 
and 2.50 GPa a t  h = 3.98 mn, and 6.046 mm respectively. 

The r e s u l t s  f o r  PBX-9404 are displayed i n  Fig. 6a and b showing t h e  
react ion coordinate A and the reac t i on  r a t e  d / d t  respectively, a t  h = 3 ,  
4, 5, 6, and 7 mn. Each curve has two traces superimposing r e s u l t s  from the  
two pressure shots. The consistency i s  obviously good. 

The 

Two pressure 
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The reac t i on  coordinate, A,  fo l lows the expected s-shaped curve b u t  

does no t  reach the value 1.0 f o r  Lagrange coordinates h c S m dur ing t h e  
t ime spanned by  our measurements. The react ion r a t e  shws  a s ing le  peak 
except f o r  t he  one located a t  3 m i n  shot 3911K. The double peak appears 
occasional ly  a t  small values o f  h. 

downslope. Th is  i s  expected from our discussion o f  the poor agreement between 
d i f f e r e n t  pressure gauge measurements i n  PBX-WW which always diverge as the 
reac t i on  goes t o  completion. The react ion indicates termination a t  a s l i g h t l y  
l a rge r  value o f  A when the  RFLA 1s perforned w i th  pressure record 3911K, and 
t h e  peak reac t i on  ra tes  are higher when using 391OK. 

We a t t r i b u t e  the d i f f e rence  i n  maximum values o f  a computed with the 
two pressure records, p r i m a r i l y  t o  the degree t o  which they are consistent 
with the v e l o c i t y  measurements. Thus, a computed using 3911K. which only  
requi red a 0.5 percent adjustment t o  f i t  the ve loc i t y  data a t  t he  shock f r o n t  
gives a maximum value o f  a o f  0.880 a t  h = 4.0 mn whi le  3910K. requ i r i ng  a 
2.4 percent adjustment gives a maximum o f  0.750. S imi lar ly ,  a t  h = 6.0 m 
3911K and 391OK give maximum a o f  0.916 and 0.803 respectively. 

The react ion r a t e  curves agree b e t t e r  on the upslope than on the 

B. RX-26-AF 
Nine experiments were performed w i th  RX-26-AF. O f  these we select two 

p a r t i c l e  v e l o c i t y  experiments t o  construct the ve loc i t y  surface. Measurements 
3915E. H, and L provide t h e  data i n  the  region 3.0 m< h < 7.0 mn. 
Pressure gauge 3822H, located a t  6 m, provides the pressure data which agree 
w i t h  3915 v e l o c i t y  data t o  0.09 percent. P a r t i c l e  ve loc i t y  measurements were 
a lso taken from experiment 3821 t o  extend the analysis t o  values o f  h less 
than 3 m and beyond 7 mn. Whatever conbination o f  v e l o c i t y  data was used, 
the  agreement between pressure and ve loc i t y  data was w i t h i n  1.25 percent a t  
the shock f r o n t  w i th  a pressure o f  2.46 &Pa. 

The composite analysis r e s u l t s  are shown i n  Figs. 7a and b .  The react ion 
takes about 6 us t o  complete as compared w i t h  3.5 u s  f o r  PBX-9404 w i th  the 
same input  shock pressure. The react ion r a t e  shows two maxima rather  than the 
s ing le  sharp maximum found i n  PBX-9404. 
react ions i n  the  RX-26-AF. As the react ion bui lds f o r  larger  values of h, t h e  
two ra tes  grow and appear t o  separate. 

We bel ieve t h i s  shows two d i s t i n c t  
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These r e s u l t s  s t r o n g l y  suggest t h a t  W l X  and TAT6 f o l l o w  t h e i r  own 

separate reac t ions :  

8.0 GPa, f o l l o w e d  b y  t h e  r e a c t i o n  t n  TATB. The two l a r g e  and separate 

r e a c t i o n s  appear ing a t  h = 8, and 9 mm i s  g raph ic  support  f o r  t h i s  

con jec ture .  

approx imate ly  7.5 GPa i s  t h e  lowest i n p u t  pressure thut w i l l  shock i n i t i a t e  

TATB . 

t h e  M l X  burns qu ick l y ,  r a i s i n g  t h e  pressure  bbove about 

These r e s u l t s  a r e  a l s o  cons is ten t  wi th our  exper ience t h a t  

F igures  6 and 7 show maximum values o f  a somewhat l e s s  than 1.0 

apparent ly  i n d i c a t i n g  t h e  r e a c t i o n  does n o t  run t o  complet ion i n  these 
experiments. 

which i s  p h y s i c a l l y  unreasonable. 
cons is tency  between t h e  v e l o c i t y  and pressure measurements, r e q u i r i n g  an 

adjustment of  7 t o  8 pe rcen t  i n  t h e  pressure. 
t h e  range Amax 1.0 f 0.1, b u t  t h e  bes t  da ta  g ives  A m a x  about 0.9. 

th rough t h e  ana lys i s  t o  an u n c e r t a i n i t y  o f  t e n  percent i n  a .  Our da ta  seem 

t o  be  b iased toward t h e  l ow  values o f k .  
t h e  equat ion  o f  s t a t e  parameters i n  Table 1, determined near t h e  C-J po in t ,  i s  

impared when t h e  shock i n i t i a t i o n  pressure  i s  an order  o f  magnitude lower.  

Thus, t he  produc t  equat ion  o f  s t a t e  may be p rov id ing  a sys temat ic  e r ro r .  
bes t  r e s u l t s  wi th  PBX-9404,suggests t h e  e r r o r  i s  somewhat l e s s  than t e n  

percent.  

Some se ts  o f  da ta  show a reach ing  a mgximum, amax > 1.0 

Such data, however, do n o t  have good 

General ly,  our  r e s u l t s  l i e  i n  

We conclude t h a t  f o r  b o t h  explosives,  e r r o r  i n  measurement propagates 

Th is  suggests t h a t  t h e  accuracy o f  

Our 

V. D ISCUSSION 

An i n t e r e s t i n g  f e a t u r e  o f  t h e  r e a c t i o n  growth i s  t he  de lay  between shock 

a r r i v a l  and t h e  a c t u a l  inc rease i n  A .  The de lay  i s  g e n e r a l l y  more than 1.0 
p s dur ing  which t ime  a takes  on s l i g h t l y  negat ive  values. 

phys i ca l  un less  one can p o s t u l a t e  some endothermic process occu r r i ng  be fo re  

the  t rans format ion  o f  exp los i ve  i n t o  product gases.” We b e l i e v e  nega t i ve  

a i s  a man i fes ta t ion  of t h e  v i s c o - p l a s t i c  work done on t h e  exp los i ve  i n  

compressing t h e  i n i t i a t i o n  s i t e s ,  l ead ing  t o  fo rmat ion  o f  h o t  spots. 
t h e  accuracy o f  our ana lys i s  i s  n o t  s u f f i c i e n t  t o  c l a i m  we a re  measuring t h e  
energy go ing  i n t o  h o t  spo t  format ion,  t h i s  con jec ture  i s  supported by  t h e  

p e r s i s t e n t  occurrence o f  sma l l  nega t i ve  values o f  A c a l c u l a t e d  w i t h  n e a r l y  
a l l  t h e  da ta  and by  t h e  r e a c t i o n  de lay  which i s  comparable w i t h  the  t ime o f  
v i s c o - p l a s t i c  pore co l l apse .  

corresponding t o  r e a c t i o n  growth. 

Th is  i s  n o t  

Although 

11 

Re fe r r i ng  t o  F ig .  4, we have hatched the  p a r t  of t h e  pressure  h i s t o r y  

The reac t i on  always te rmina tes  a t  a p o i n t  
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occurr ing s l i g h t l y  l a t e r  than the maximum i n  pressure. This i s  t o  be 
expected. Assuming no heat conduction through the boundaries o f  t he  react ing 
f l u i d  we have. 

where the time de r i va t i ves  are Lagrangian. Using Eqs. (6) and (7 ) .  and 

r e s t r i c t i n g  the s t a t e  o f  the explosive (but no t  the product gases) t o  an 
isentrope allOus us t o  express e as a funct ion o f  p, V, X ,  and the spec i f i c  
entropy o f  t h e  explosive, sx. As a resu l t ,  E q .  (13) can be put i n  the form 

The sound speed c i n  the reac t i ng  mixture i s  given by 
* 

the  par t i a l  de r i va t i ves  o f  e(p,VJ ,sx) appearing i n  E q s .  (14) and 
(15) are t o  be taken w i th  p, V, X ,  sx constant (except for  the independent 

var iab le ac tua l l y  appearing i n  the derivative). 

ae/ax i n  E q .  (14) i s  negative, so the r a t e  o f  chsnge i n  pressure due t o  

the  progress of t h e  react ion i s  pos i t ive.  

between growth due t o  reaction, and decrease due t o  expansion. When 

a x l a t  = 0 i n  E q .  (14). a p / a t  < 0. Our resu l t s  are always consistent 
w i th  t h i s  cohdi t i  on. 

explore the s ta te  o f  t he  reac t i ve  f low i n  f i n e  de ta i l .  Figures 8 and 9 show 
t h e  s ta te  path o f  a p a r t i c l e  located a t  h = 6 mn i n  both explosives. Figure 8 
i s  a three dimehslonal p l o t  o f  the path o f  a p a r t l c l e  o f  PBX-9404 from shock 
a r r i v a l  t o  react i4n termination. 

reactant  isentrope. Fol lowing a short i n i t i a t i o n  process the p a r t i c l e  fol lows 
a t r a j e c t o r y  i n te rsec t i ng  t h e  product isentrope tangent ia l ly .  

I n  Figs. 8 and 9 only  a shor t  segment o f  the product isentrope i s  
displayed, j o ined  t o  a segment o f  t he  s ta te  path of t he  products. 

It can be shown tha t  

Equation (14) i s  a statement tha t  f l u i d  pressure change i s  a competit ion 

Wi th in  the  l i m i t s  o f  our s imp l i f y i ng  thermdynamic assumptions we can 

The path begins by departing from the 
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The analys is  shown i n  Fig. 8 was selected because the reac t i on  terminated 

For c l a r i t y  on t h i s  point, Fig. 9 shows a 
wi th a valuea,, = 1.0. It i s  t h i s  property which allows the s t a t e  path 

t o  i n t e r s e c t  t h e  product Isentrope. 
s i m i l a r  s t a t e  path i n  RX-26-AF where Amax f 0.834. The s t a t e  path i s  

separated from the product isentrope a t  t he  end o f  reaction. 
The experiments shown i n  Figs. 8 and 9 are f a r  from steady s t a t e  

detonations. However, It i s  i n te res t i ng  t o  compare the  r e s u l t s  w i t h  the 
ZND 
shock i n  the  reactant, preceeding a C-J deflagratlon. The de f l ag ra t i on  i s  
centered a t  t h e  shock and proceeds down a Rayleigh l i n e  i n  the  P-V plane t o  a 
p o i n t  o f  simultaneous tangency w i t h  the product isentrope and Hugoniot. The 
two segments o f  t h e  Rayleigh l ine,  going from t h e  i n i t i a l  s ta te  and the  shock 
state, and from the  shock t o  the  C-J p o i n t  are co l inear  i n  a steady detonation 
wave. 

detonation. 
i n t e r p r e t a t i o n  of Fig. 10 i s  aided by r e f e r r i n g  t o  Eq. (14). 

i s  small w h i l e  t h e  f l u i d  i s  compressed i n  the neighborhood o f  t h e  explosive 
isentrope. As reac t i on  bui lds, we reach a po in t  o f  maximum compression where 
dV/dt = 0 and t h e  increase i n  pressure i s  e n t i r e l y  due t o  the growth o f  t he  
reaction. Th is  p o i n t  i s  marked t = 2.77 ps. 

pressure i s  a t  a maximum. I n  Eq. (14) t h i s  po in t  corresponds t o  a balance 
between the terms representing expansion o f  the f l u i d  and react ion progress. 
A t  t = 4.19 PS, X reaches i t s  maximum value and the  s ta te  po in t  j o i n s  the 
product i sen tr ope. 

w i l l  co l lapse t o  a s t r a i g h t  l ine.  The points  o f  maximum compression and 
maximum pressure w i l l  coincide. Thus, t h e  pressure maximum w i l l  n o t  be a 
von Neumann sp ike a t  the shock f r o n t  unless dV/dt and @,/dt vanish there 
simultaneously. 
reaction. 
repor ted independently i n  the case o f  f u l l  running detonations. 

12 model o f  detonation. B r i e f l y ,  t h e  ZND model describes detonation as a 

F igure 10 shows what happens i n  the  unsteady wave b u i l d i n g  t o  
I t i s  what one sees i n  Fig. 8 by  viewing along the e-axis. The 

The shock a r r i ves  a t  the f l u i d  sample a t  t = 1 . 7 8 ~ s .  A t  f i r s t  d / d t  

A microsecond l a t e r  the 

If we imagine t h i s  process b u i l d i n g  t o  steady detonation the  s t a t e  path 

It may, i n  fact ,  l i e  a t  a po in t  near the end o f  t h e  
Th is  separation o f  pressure maximum from shock a r r i v a l  has been 

13 
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V1. CONCLUSION 

We have demonstrated the  usefulness o f  RFLA i n  studying t h e  shock 
I n i t i a t i o n  o f  two important s o l i d  explosives w i t h  vcry d i f f e r e n t  burn 
character is t ics .  We have resolved t h e  e n t i r e  react ion process. As a r e s u l t  

we are able t o  get a p i c tu re  o f  the process o f  i n i t i a t i o n  as w e l l  as the 
growth o f  reaction. The c lea r  separation o f  WlX and TATB ra tes  i n  Fig. 7b 
shows the u t i l i t y  o f  RFLA i n  evaluating the performance o f  explosives 
mixtures. Studies o f  t h e  e f f e c t  o f  f i n e l y  d iv ided fue l s  and ox id izers  may be 
poss ib le  i f  the  ox idat ion react ion i s  n o t  delayed so long t h a t  the gauges f a i l  
before t h e  end o f  reaction. 

resolve i n te res t i ng  features o f  the react ion process. The main l i m i t a t i o n  on 
accuracy a t  t h i s  po in t  i s  r e p r o d u c i b i l i t y  o f  t h e  f l y e r  ve loc i t y  from the 
p a r t i c l e  v e l o c i t y  t o  the pressure experiments. We expect t o  have greater 
con t ro l  over t h i s  i n  fu tu re  experiments. Because the react ion t i m e  i s  shorter 
as the reac t i on  grows, we w i l l  need b e t t e r  t ime resolut ion i n  the experiments 
t o  c a r r y  ou t  RFLA c loser  t o  detonation. Present t i m e  reso lu t i on  does not  
permit s u f f i c i e n t l y  accurate f i t s  t o  the t ime h i s t o r y  curves t o  a l low us t o  
analyze shock runs greater than 10.0 mn. 
r e s u l t s  are very d i f f i c u l t  t o  obtain. 

equations f o r  use i n  computer models o f  h igh explosive burn. These r a t e  
equations have a number o f  terms whose importance i s  a matter o f  speculation. 
The reac t i ve  f l ow  model can be compared d i r e c t l y  w i th  Figs. 6 and 7 .  

proper t ies o f  TATB through our experiments w i th  RX-26-AF. The reason f o r  t h i s  
i s  due t o  l i m i t a t i o n  on the  f l y e r  ve loc i t y  i n  our present gun system which 
r e s t r i c t s  our i n i t i a t i o n  pressures t o  less than 9.0 GPa. 
requi res sustained pressures i n  excess t o  11.5 GPa f o r  re l i ab le ,  hmgeneous 
i n i t i a t i o n .  
non-metal l ic f l y e r  material which w i l l  permit a d i r e c t  RFLA t o  be performed on 
a p l a s t i c  bonded, TATB based, explosive. 

The o v e r a l l  reported accuracy o f  these r e s u l t s  i s  c e r t a i n l y  adequate t o  

I n  fact ,  f o r  h > 8.0 mn the 

There i s  a c lear  appl icat ion o f  RFLA i n  invest igat ing the  react ion r a t e  

We have on ly  been able t o  analyze the i n te res t i ng  shock i n i t i a t i o n  

TATB, however, 

We hope t o  solve t h i s  problem soon w i th  new high density 
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Target assembly 

2 mm 

Anodized portion Solder 
of gauge tabs 

Fig. 1 Exploded view of a t y p i c a l  mu l t ip l e  gauge i n s t a l l a t i o n  
showing gauge o r i e n t a t i o n .  
provided t o  minimize l e a d  spreading e f f e c t s  from edge 
r a r e f a c t i o n .  
i n  t h e  ske tch  a t  t h e  bottom o f  t h e  f igu re .  

F l a t  edges on f l y e r  a r e  

Dimensional d e t a i l s  o f  t h e  gauge are shown 
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Fig. 2 A t y p i c a l  c o l l e c t i o n  of v e l o c i t y  time records  from seve ra l  
d i f f e r e n t  experiments. Three are se l ec t ed  t o  form t h e  
U ( h , t )  sur face .  A l s o  shown a r e  two pressure  records w3ich 
are used i n  t h e  in t eg ra t ion  of t h e  equations of f l u i d  motion. 
These da t a  a r e  taken from experiments with RX-2643. 
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1.4 t I 1 

I I '1 
1.2 

PBX 9404 (3756.G) 

- 

I \  1.0 I- 

Fig. 3 Comparison of velocity records at h = 10 m. Note the 
relative size of the second increase in velocity in the 
two explosives. 
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c 

h 
(3 
CI 

E 
2 

Fig. 4 Comparison of typical pressure record data in RX-26-AF 
and PBX-9404. 
h = 6 mm. 
px-26-i~~ contrasts with strong disagreement between 
gauges in PBX-9404. 
when h is increasing from a value of 0.0. 

Each explosive has two pressure gauges 
The agreement between two measurements in 

The shaded bands indicate the times 
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8 l  
2 h' 

3 
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t t' 
Time 

F i g .  5 Diagram o f  r e g i o n s  o f  i n t e g r a t i o n  i n  t h e  h - t  
p l a n e  r e q u i r e d  f o r  E q .  ( 3 ) .  I f  h < h '  t h e  i n i t i a l  
c o n d i t i o n  must  b e  t a k e n  from t h e  s h o c k  t r a j e c -  
t o r y  i n  r e g i o n  1 ,  and from the p r e s s u r e  g a u g e  
m e a s u r e m e n t s  i n  r e g i o n  2 .  
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t (PSI 

REACTION COORDINME 

Fig. 6a Analysis in shock initiated PBX-9404 using 
velocity measurements 3919G, K, N. 
pressure measurements are 3911K, and 3910K. 
Maximum h i s  always greater vhen 3911K is 
used than vith 3911K. 

The 
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Fig. 6b 

1 .o 

0.8 

0.6 i 

0.4 

0.2 

0 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

t (PI 

REACTION RATE 

Analysis i n  shock i n i t i a t e d  PBX-9404 using 
ve loc i ty  measurements 3919G, K. N. The pressure 
measurements are 3911K, and 3910K. Maximum A 
i s  always grea te r  when 3911K i s  used than with 
3911K. 
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Fig. 7a Analysis in shock initiated RX-26-AF using velocity 
gauges 3915E, H, L, and pressure gauge 3822H. 
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REACTION RATE 

.g. 7b Analysis i n  shock i n i t i a t e d  RX-26-AF using veloc 
gauges 2915E, H,  L ,  and pressure gague 3822H. 

i i t y  
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0.45 0.50 0.55 0.60 

v (cm3/gm) 

Fig. 8 State path of reacting PBX-9404. The reaction 
begins as the system leaves the isentrope of the 
explosive and terminates OF the product isentrope. 
RFLA data are from velocity measurements 3919G,K, 
N and pressure measurement 3910G. 
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Reactant 
isentrope 

0.45 0.50 0.55 0.60 0.65 

v (cm3/gm) 

Fig. 9 S t a t e  pa th  of reac t ing  RX-26-AF. S t a t e  pa th  
does not i n t e r e c t  product i s en t rope  because 
X #l. RFLA data are from experiments 39153, 
$y, and 3822H. 
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Figure 10. State path of PBX 9404 in PV-plane. 
Projection of Figure 8 along e-axis. 
Dots indicate points calculated 
by RFLA. 
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TABLE 1 

Jones-Wi lkins-Lee (&L) Equation of State Parameters 

GPa GPa 
A( GPa) B(GPa) R1 R2 Q( M J/ kg 1 

PBX-9404: 
Reactant 6969. -172.7 7.8 3.9 A58  
Products 852.4 18.02 4.6 1.3 .38 5.56 

R X- 26-AF : 
Reactant 201100. -5.204 12.4 1.24 ,945 
Products 601.8 52.64 5.0 2.1 .34 4.64 
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